Harmonic analysis on quantum tori

Quanhua Xu

Wuhan University

and

Université de Besançon

Shanghai - July 2012

Joint work with Zeqian Chen and Yin Zhi

Quantum tori

Let $\theta \in \mathbb{R}$. Let U and V be two unitary operators on a Hilbert space H satisfying the following commutation relation:

$$UV = e^{2\pi i\theta} VU$$
.

Example: $H = L_2(\mathbb{T})$ with \mathbb{T} the unit circle; U and V are given:

$$Uf(z) = zf(z)$$
 and $Vf(z) = f(e^{-2\pi i\theta}z)$, $f \in L_2(\mathbb{T})$, $z \in \mathbb{T}$.

Quantum tori

Let $\theta \in \mathbb{R}$. Let *U* and *V* be two unitary operators on a Hilbert space *H* satisfying the following commutation relation:

$$UV = e^{2\pi i\theta} VU$$
.

Example: $H = L_2(\mathbb{T})$ with \mathbb{T} the unit circle; U and V are given:

$$Uf(z) = zf(z)$$
 and $Vf(z) = f(e^{-2\pi i\theta}z)$, $f \in L_2(\mathbb{T})$, $z \in \mathbb{T}$.

Let \mathcal{A}_{θ} be the universal C*-algebra generated by U and V. This is a quantum (or noncommutative) 2-torus. If θ is irrational, \mathcal{A}_{θ} is an irrational rotation C*-algebra. The quantum tori are fundamental examples, probably the most accessible examples for operator algebras and noncommutative geometry.

More generally, let $d \ge 2$ and $\theta = (\theta_{kj})$ be a $d \times d$ real skew-symmetric matrix, i.e. $\theta^t = -\theta$. Let U_1, \dots, U_d be d unitary operators on H satisfying

$$U_kU_j=e^{2\pi i\theta_{kj}}U_jU_k, j,k=1,\ldots,d.$$

Let \mathcal{A}_{θ} be the universal C*-algebra generated by U_1, \ldots, U_d . This is the noncommutative d-torus associated with θ . In this talk $U = (U_1, \cdots, U_d)$, θ and \mathcal{A}_{θ} will be fixed as above.

More generally, let $d \ge 2$ and $\theta = (\theta_{kj})$ be a $d \times d$ real skew-symmetric matrix, i.e. $\theta^t = -\theta$. Let U_1, \dots, U_d be d unitary operators on H satisfying

$$U_kU_j=e^{2\pi i\theta_{kj}}U_jU_k, j,k=1,\ldots,d.$$

Let \mathcal{A}_{θ} be the universal C*-algebra generated by U_1, \ldots, U_d . This is the noncommutative d-torus associated with θ . In this talk $U = (U_1, \cdots, U_d)$, θ and \mathcal{A}_{θ} will be fixed as above.

Notation used throughout the talk:

- ▶ Elements of \mathbb{Z}^d are denoted by $m = (m_1, \dots, m_d)$.
- $ightharpoonup \mathbb{T}^d$ is the usual *d*-torus:

$$\mathbb{T}^d = \{(z_1, \dots, z_d) : |z_j| = 1, z_j \in \mathbb{C}\}$$

▶ For $m \in \mathbb{Z}^d$ and $z = (z_1, ..., z_d) \in \mathbb{T}^d$ let

$$z^{m} = z_{1}^{m_{1}} \cdots z_{d}^{m_{d}}$$
 and $U^{m} = U_{1}^{m_{1}} \cdots U_{d}^{m_{d}}$,

where
$$U = (U_1, ..., U_d)$$
.

Trace - noncommutative measure

A polynomial in $U = (U_1, \dots, U_d)$ is a finite sum

$$\mathbf{X} = \sum_{m \in \mathbb{Z}^d} \alpha_m \mathbf{U}^m \in \mathcal{A}_{\theta} \quad \text{with} \quad \alpha_m \in \mathbb{C}.$$

Let \mathcal{P}_{θ} denote the involutive subalgebra of all such polynomials. Then \mathcal{P}_{θ} is dense in \mathcal{A}_{θ} . For any x as above define

$$\tau(x) = \alpha_0$$
 with $0 = (0, \dots, 0)$.

Then τ extends to a faithful tracial state on \mathcal{A}_{θ} .

Trace - noncommutative measure

A polynomial in $U = (U_1, \dots, U_d)$ is a finite sum

$$\mathbf{X} = \sum_{m \in \mathbb{Z}^d} \alpha_m \mathbf{U}^m \in \mathcal{A}_{\theta} \quad \text{with} \quad \alpha_m \in \mathbb{C}.$$

Let \mathcal{P}_{θ} denote the involutive subalgebra of all such polynomials. Then \mathcal{P}_{θ} is dense in \mathcal{A}_{θ} . For any x as above define

$$\tau(x) = \alpha_0$$
 with $0 = (0, \dots, 0)$.

Then τ extends to a faithful tracial state on \mathcal{A}_{θ} . Let \mathbb{T}^d_{θ} be the w*-closure of \mathcal{A}_{θ} in the GNS representation of τ . Then τ becomes a normal faithful tracial state on \mathbb{T}^d_{θ} . Thus $(\mathbb{T}^d_{\theta}, \tau)$ is a tracial noncommutative probability space.

For $1 \le p < \infty$ and $x \in \mathbb{T}_{\theta}^d$ let

$$\|x\|_p = (\tau(|x|^p))^{\frac{1}{p}}$$
 with $|x| = (x^*x)^{\frac{1}{2}}$.

This defines a norm on \mathbb{T}^d_{θ} . The corresponding completion is denoted by $L_p(\mathbb{T}^d_{\theta})$. We also set $L_{\infty}(\mathbb{T}^d_{\theta}) = \mathbb{T}^d_{\theta}$.

For $1 \le p < \infty$ and $x \in \mathbb{T}_{\theta}^d$ let

$$\|x\|_p = (\tau(|x|^p))^{\frac{1}{p}}$$
 with $|x| = (x^*x)^{\frac{1}{2}}$.

This defines a norm on \mathbb{T}^d_{θ} . The corresponding completion is denoted by $L_p(\mathbb{T}^d_{\theta})$. We also set $L_{\infty}(\mathbb{T}^d_{\theta}) = \mathbb{T}^d_{\theta}$.

probability space
$$(\mathbb{T}^d, \mu) \leftrightarrow \text{noncom probability space}(\mathbb{T}^d_\theta, \tau)$$

For $1 \le p < \infty$ and $x \in \mathbb{T}_{\theta}^d$ let

$$\|x\|_p = (\tau(|x|^p))^{\frac{1}{p}}$$
 with $|x| = (x^*x)^{\frac{1}{2}}$.

This defines a norm on \mathbb{T}^d_{θ} . The corresponding completion is denoted by $L_p(\mathbb{T}^d_{\theta})$. We also set $L_{\infty}(\mathbb{T}^d_{\theta}) = \mathbb{T}^d_{\theta}$.

The philosophy behind is explained as follows:

probability space $(\mathbb{T}^d, \mu) \leftrightarrow \text{noncom probability space}(\mathbb{T}^d_\theta, \tau)$ commutative algebra $L_\infty(\mathbb{T}^d) \leftrightarrow \text{noncommutative algebra } \mathbb{T}^d_\theta$

For $1 \le p < \infty$ and $x \in \mathbb{T}_{\theta}^d$ let

$$\|x\|_p = (\tau(|x|^p))^{\frac{1}{p}}$$
 with $|x| = (x^*x)^{\frac{1}{2}}$.

This defines a norm on \mathbb{T}^d_{θ} . The corresponding completion is denoted by $L_p(\mathbb{T}^d_{\theta})$. We also set $L_{\infty}(\mathbb{T}^d_{\theta}) = \mathbb{T}^d_{\theta}$.

probability space
$$(\mathbb{T}^d, \mu) \leftrightarrow \text{noncom probability space}(\mathbb{T}^d_{\theta}, \tau)$$
 commutative algebra $L_{\infty}(\mathbb{T}^d) \leftrightarrow \text{noncommutative algebra } \mathbb{T}^d_{\theta}$ integration against $\mu \int_{\mathbb{T}^d} \leftrightarrow \text{trace } \tau$

For $1 \le p < \infty$ and $x \in \mathbb{T}_{\theta}^d$ let

$$\|x\|_p = (\tau(|x|^p))^{\frac{1}{p}}$$
 with $|x| = (x^*x)^{\frac{1}{2}}$.

This defines a norm on \mathbb{T}^d_{θ} . The corresponding completion is denoted by $L_p(\mathbb{T}^d_{\theta})$. We also set $L_{\infty}(\mathbb{T}^d_{\theta}) = \mathbb{T}^d_{\theta}$.

probability space
$$(\mathbb{T}^d, \mu) \leftrightarrow \text{noncom probability space}(\mathbb{T}^d_{\theta}, \tau)$$
 commutative algebra $L_{\infty}(\mathbb{T}^d) \leftrightarrow \text{noncommutative algebra } \mathbb{T}^d_{\theta}$ integration against $\mu \int_{\mathbb{T}^d} \leftrightarrow \text{trace } \tau$
$$\int_{\mathbb{T}^d} : L_{\infty}(\mathbb{T}^d) \to \mathbb{C} \leftrightarrow \tau : \mathbb{T}^d_{\theta} \to \mathbb{C}$$

For $1 \le p < \infty$ and $x \in \mathbb{T}_{\theta}^d$ let

$$\|x\|_{p} = (\tau(|x|^{p}))^{\frac{1}{p}}$$
 with $|x| = (x^{*}x)^{\frac{1}{2}}$.

This defines a norm on \mathbb{T}^d_{θ} . The corresponding completion is denoted by $L_p(\mathbb{T}^d_{\theta})$. We also set $L_{\infty}(\mathbb{T}^d_{\theta}) = \mathbb{T}^d_{\theta}$.

probability space
$$(\mathbb{T}^d, \mu) \leftrightarrow \text{noncom probability space}(\mathbb{T}^d_\theta, \tau)$$
 commutative algebra $L_\infty(\mathbb{T}^d) \leftrightarrow \text{noncommutative algebra } \mathbb{T}^d_\theta$ integration against $\mu \int_{\mathbb{T}^d} \leftrightarrow \text{trace } \tau$
$$\int_{\mathbb{T}^d} : L_\infty(\mathbb{T}^d) \to \mathbb{C} \quad \leftrightarrow \quad \tau : \mathbb{T}^d_\theta \to \mathbb{C}$$

$$\int_{\mathbb{T}^d} f d\mu \quad \leftrightarrow \quad \tau(x)$$

For $1 \le p < \infty$ and $x \in \mathbb{T}_{\theta}^d$ let

$$\|x\|_p = (\tau(|x|^p))^{\frac{1}{p}}$$
 with $|x| = (x^*x)^{\frac{1}{2}}$.

This defines a norm on \mathbb{T}^d_{θ} . The corresponding completion is denoted by $L_p(\mathbb{T}^d_{\theta})$. We also set $L_{\infty}(\mathbb{T}^d_{\theta}) = \mathbb{T}^d_{\theta}$.

probability space
$$(\mathbb{T}^d, \mu) \leftrightarrow \text{noncom probability space}(\mathbb{T}^d_\theta, \tau)$$
 commutative algebra $L_\infty(\mathbb{T}^d) \leftrightarrow \text{noncommutative algebra } \mathbb{T}^d_\theta$ integration against $\mu \int_{\mathbb{T}^d} \leftrightarrow \text{trace } \tau$
$$\int_{\mathbb{T}^d} : L_\infty(\mathbb{T}^d) \to \mathbb{C} \leftrightarrow \tau : \mathbb{T}^d_\theta \to \mathbb{C}$$

$$\int_{\mathbb{T}^d} f d\mu \leftrightarrow \tau(x)$$

$$\|f\|_p = \left(\int_{\mathbb{T}^d} |f|^p d\mu\right)^{\frac{1}{p}} \leftrightarrow \|x\|_p = \left(\tau(|x|^p)\right)^{\frac{1}{p}}$$

For $1 \le p < \infty$ and $x \in \mathbb{T}_{\theta}^{d}$ let

$$\|x\|_{p} = (\tau(|x|^{p}))^{\frac{1}{p}}$$
 with $|x| = (x^{*}x)^{\frac{1}{2}}$.

This defines a norm on \mathbb{T}^d_{θ} . The corresponding completion is denoted by $L_p(\mathbb{T}^d_{\theta})$. We also set $L_{\infty}(\mathbb{T}^d_{\theta}) = \mathbb{T}^d_{\theta}$.

probability space
$$(\mathbb{T}^d, \mu) \leftrightarrow \text{noncom probability space}(\mathbb{T}^d_\theta, \tau)$$
 commutative algebra $L_\infty(\mathbb{T}^d) \leftrightarrow \text{noncommutative algebra } \mathbb{T}^d_\theta$ integration against $\mu \int_{\mathbb{T}^d} \leftrightarrow \text{trace } \tau$
$$\int_{\mathbb{T}^d} : L_\infty(\mathbb{T}^d) \to \mathbb{C} \leftrightarrow \tau : \mathbb{T}^d_\theta \to \mathbb{C}$$

$$\int_{\mathbb{T}^d} f d\mu \leftrightarrow \tau(x)$$

$$\|f\|_p = \Big(\int_{\mathbb{T}^d} |f|^p d\mu\Big)^{\frac{1}{p}} \leftrightarrow \|x\|_p = \Big(\tau(|x|^p)\Big)^{\frac{1}{p}}$$

$$L_p(\mathbb{T}^d) \leftrightarrow L_p(\mathbb{T}^d)$$

Fourier coefficients

The trace τ extends to a contractive functional on $L_1(\mathbb{T}^d_\theta)$. Thus given $x \in L_p(\mathbb{T}^d_\theta)$ define

$$\hat{\mathbf{x}}(\mathbf{m}) = \tau((\mathbf{U}^{\mathbf{m}})^* \mathbf{x}) = \alpha_{\mathbf{m}}, \quad \mathbf{m} \in \mathbb{Z}^d.$$

These are the Fourier coefficients of x. Like in the classical case we formally write

$$x \sim \sum_{m \in \mathbb{Z}^d} \hat{x}(m) U^m$$
.

This is the Fourier series of *x*; *x* is uniquely determined by its Fourier series.

We will study various properties of Fourier series like multipliers, mean and pointwise convergence.

Fourier multipliers on the usual *d*-torus

Let $\phi = \{\phi_m\}_{m \in \mathbb{Z}^d} \subset \mathbb{C}$. Recall that ϕ is a Fourier multiplier on $L_p(\mathbb{T}^d)$ if the map

$$\sum_{m \in \mathbb{Z}^d} \alpha_m \mathbf{z}^m \mapsto \sum_{m \in \mathbb{Z}^d} \phi_m \alpha_m \mathbf{z}^m$$

is bounded on $L_p(\mathbb{T}^d)$. Let $M(L_p(\mathbb{T}^d))$ denote the space of all Fourier multipliers on $L_p(\mathbb{T}^d)$, equipped with the natural norm.

Fourier multipliers on the usual *d*-torus

Let $\phi = \{\phi_m\}_{m \in \mathbb{Z}^d} \subset \mathbb{C}$. Recall that ϕ is a Fourier multiplier on $L_p(\mathbb{T}^d)$ if the map

$$\sum_{m \in \mathbb{Z}^d} \alpha_m \mathbf{z}^m \mapsto \sum_{m \in \mathbb{Z}^d} \phi_m \alpha_m \mathbf{z}^m$$

is bounded on $L_p(\mathbb{T}^d)$. Let $M(L_p(\mathbb{T}^d))$ denote the space of all Fourier multipliers on $L_p(\mathbb{T}^d)$, equipped with the natural norm.

Simple facts.

- $M(L_2(\mathbb{T}^d)) = \ell_\infty(\mathbb{Z}^d)$
- ▶ $M(L_p(\mathbb{T}^d)) = M(L_{p'}(\mathbb{T}^d))$ with p' the conjugate index of p
- $\phi \in M(L_1(\mathbb{T}^d))$ iff ϕ is the Fourier transform of a bounded measure, i.e., $\exists \mu$, a bounded measure on \mathbb{T}^d s.t. $\widehat{\mu}(m) = \phi_m$ for all $m \in \mathbb{Z}^d$.

Completely bounded multipliers

We will also need completely bounded multipliers. Recall that a map T is completely bounded (cb for short) on $L_p(\mathbb{T}^d)$ if $T \otimes \mathrm{Id}_{S_p}$ is bounded on $L_p(\mathbb{T}^d; S_p)$, where S_p denotes the Schatten p-class. We then set

$$||T||_{\mathrm{cb}} = ||T \otimes \mathrm{Id}_{S_p}||.$$

 ϕ is called a cb Fourier multiplier on $L_p(\mathbb{T}^d)$ if T_ϕ is cb on $L_p(\mathbb{T}^d)$. $M_{cb}(L_p(\mathbb{T}^d))$ denotes the space of all cb Fourier multipliers on $L_p(\mathbb{T}^d)$.

Completely bounded multipliers

We will also need completely bounded multipliers. Recall that a map T is completely bounded (cb for short) on $L_p(\mathbb{T}^d)$ if $T \otimes \mathrm{Id}_{S_p}$ is bounded on $L_p(\mathbb{T}^d; S_p)$, where S_p denotes the Schatten p-class. We then set

$$||T||_{\mathrm{cb}} = ||T \otimes \mathrm{Id}_{S_p}||.$$

 ϕ is called a cb Fourier multiplier on $L_p(\mathbb{T}^d)$ if T_ϕ is cb on $L_p(\mathbb{T}^d)$. $M_{cb}(L_p(\mathbb{T}^d))$ denotes the space of all cb Fourier multipliers on $L_p(\mathbb{T}^d)$.

It is known that

$$M_{\mathrm{cb}}(L_{\rho}(\mathbb{T}^d)) = M(L_{\rho}(\mathbb{T}^d))$$

for $p \in \{1, 2, \infty\}$, and only for these three values of p.

Fourier multipliers on the quantum torus

Similarly, we define Fourier multipliers on the noncommutative d-torus \mathbb{T}_{θ}^{d} .

Again, let $\phi = \{\phi_m\}_{m \in \mathbb{Z}^d} \subset \mathbb{C}$ and

$$T_{\phi} : \sum_{m \in \mathbb{Z}^d} \alpha_m U^m \mapsto \sum_{m \in \mathbb{Z}^d} \phi_m \alpha_m U^m$$

for any polynomial $x \in \mathcal{P}_{\theta}$. We call ϕ a Fourier multiplier on $L_p(\mathbb{T}^d_{\theta})$ if T_{ϕ} extends to a bounded map on $L_p(\mathbb{T}^d_{\theta})$. Let $M(L_p(\mathbb{T}^d_{\theta}))$ denote the space of all L_p Fourier multipliers on \mathbb{T}^d_{θ} .

Fourier multipliers on the quantum torus

Similarly, we define Fourier multipliers on the noncommutative d-torus \mathbb{T}^d_{θ} .

Again, let $\phi = \{\phi_m\}_{m \in \mathbb{Z}^d} \subset \mathbb{C}$ and

$$T_{\phi}: \sum_{m \in \mathbb{Z}^d} \alpha_m U^m \mapsto \sum_{m \in \mathbb{Z}^d} \phi_m \alpha_m U^m$$

for any polynomial $x \in \mathcal{P}_{\theta}$. We call ϕ a Fourier multiplier on $L_p(\mathbb{T}^d_{\theta})$ if T_{ϕ} extends to a bounded map on $L_p(\mathbb{T}^d_{\theta})$. Let $M(L_p(\mathbb{T}^d_{\theta}))$ denote the space of all L_p Fourier multipliers on \mathbb{T}^d_{θ} .

Similarly, we define cb Fourier multipliers on $L_p(\mathbb{T}^d_\theta)$ and introduce the corresponding space $M_{cb}(L_p(\mathbb{T}^d_\theta))$.

Recall that T_{ϕ} is cb on $L_{p}(\mathbb{T}_{\theta}^{d})$ if $\mathrm{Id}\otimes T$ is bounded on $L_{p}(\mathcal{B}(\ell_{2})\bar{\otimes}\mathbb{T}_{\theta}^{d})$.

$$M_{\mathrm{cb}}(L_{p}(\mathbb{T}_{\theta}^{d})) = M_{\mathrm{cb}}(L_{p}(\mathbb{T}^{d})).$$

$$M_{\mathrm{cb}}(L_{p}(\mathbb{T}_{\theta}^{d})) = M_{\mathrm{cb}}(L_{p}(\mathbb{T}^{d})).$$

Proof. Easy direction (independently by Junge, Mei, Parcet):

$$M_{\operatorname{cb}}(L_p(\mathbb{T}^d))\subset M_{\operatorname{cb}}(L_p(\mathbb{T}^d_\theta)).$$

The tool is transference.

$$M_{\mathrm{cb}}(L_{p}(\mathbb{T}_{\theta}^{d})) = M_{\mathrm{cb}}(L_{p}(\mathbb{T}^{d})).$$

Proof. Easy direction (independently by Junge, Mei, Parcet):

$$M_{\mathrm{cb}}(L_{p}(\mathbb{T}^{d}))\subset M_{\mathrm{cb}}(L_{p}(\mathbb{T}^{d}_{\theta})).$$

The tool is transference. Let $\phi \in M_{\mathrm{cb}}(L_p(\mathbb{T}^d))$ and $x \in L_p(B(\ell_2)\bar{\otimes}\mathbb{T}^d_\theta)$. For $z \in \mathbb{T}^d$ define

$$\pi_{\mathbf{z}}(\mathbf{x}) = \sum_{m \in \mathbb{Z}^d} \hat{\mathbf{x}}(m) \otimes \mathbf{U}^m \mathbf{z}^m.$$

Then π_z is an isometry on $L_p(B(\ell_2)\bar{\otimes}\mathbb{T}^d_\theta)$.

$$M_{\mathrm{cb}}(L_{p}(\mathbb{T}_{\theta}^{d})) = M_{\mathrm{cb}}(L_{p}(\mathbb{T}^{d})).$$

Proof. Easy direction (independently by Junge, Mei, Parcet):

$$M_{\mathrm{cb}}(L_{\rho}(\mathbb{T}^d)) \subset M_{\mathrm{cb}}(L_{\rho}(\mathbb{T}^d_{\theta})).$$

The tool is transference. Let $\phi \in M_{\mathrm{cb}}(L_p(\mathbb{T}^d))$ and $x \in L_p(B(\ell_2)\bar{\otimes}\mathbb{T}^d_\theta)$. For $z \in \mathbb{T}^d$ define

$$\pi_{\mathbf{z}}(\mathbf{x}) = \sum_{m \in \mathbb{Z}^d} \hat{\mathbf{x}}(m) \otimes \mathbf{U}^m \mathbf{z}^m.$$

Then π_z is an isometry on $L_p(B(\ell_2)\bar{\otimes}\mathbb{T}^d_\theta)$. We consider $z\mapsto \pi_z(x)$ as a function from \mathbb{T}^d to $L_p(B(\ell_2)\bar{\otimes}\mathbb{T}^d_\theta)$. Then

$$\|\pi.(\boldsymbol{x})\|_{L_p(\mathbb{T}^d;L_p(\boldsymbol{B}(\ell_2)\bar{\otimes}\mathbb{T}^d_\theta))} = \|\boldsymbol{x}\|_{L_p(\boldsymbol{B}(\ell_2)\bar{\otimes}\mathbb{T}^d_\theta)}.$$

$$M_{\mathrm{cb}}(L_{\rho}(\mathbb{T}_{\theta}^d)) = M_{\mathrm{cb}}(L_{\rho}(\mathbb{T}^d)).$$

Proof. Easy direction (independently by Junge, Mei, Parcet):

$$M_{\mathrm{cb}}(L_{\rho}(\mathbb{T}^d)) \subset M_{\mathrm{cb}}(L_{\rho}(\mathbb{T}^d_{\theta})).$$

The tool is transference. Let $\phi \in M_{\text{cb}}(L_p(\mathbb{T}^d))$ and $x \in L_p(B(\ell_2)\bar{\otimes}\mathbb{T}^d_\theta)$. For $z \in \mathbb{T}^d$ define

$$\pi_{\mathbf{z}}(\mathbf{x}) = \sum_{\mathbf{m} \in \mathbb{Z}^d} \hat{\mathbf{x}}(\mathbf{m}) \otimes \mathbf{U}^{\mathbf{m}} \mathbf{z}^{\mathbf{m}}.$$

Then π_Z is an isometry on $L_p(B(\ell_2)\bar{\otimes}\mathbb{T}^d_\theta)$. We consider $z\mapsto \pi_Z(x)$ as a function from \mathbb{T}^d to $L_p(B(\ell_2)\bar{\otimes}\mathbb{T}^d_\theta)$. Then

$$\|\pi.(\mathbf{X})\|_{L_p(\mathbb{T}^d;L_p(B(\ell_2)\bar{\otimes}\mathbb{T}^d_a))} = \|\mathbf{X}\|_{L_p(B(\ell_2)\bar{\otimes}\mathbb{T}^d_a)}.$$

On the other hand,

$$\pi_{\mathbf{z}}(T_{\phi}(\mathbf{x})) = T_{\phi}(\pi_{\mathbf{z}}(\mathbf{x})).$$

Here T_{ϕ} on the left is the Fourier multiplier on $L_{\rho}(\mathbb{T}^d_{\theta})$ while T_{ϕ} on the right is the Fourier multiplier on $L_{\rho}(\mathbb{T}^d)$. It then follows that ϕ is a cb Fourier multiplier on $L_{\rho}(\mathbb{T}^d_{\theta})$.

Hard direction: $M_{cb}(L_p(\mathbb{T}^d)) \supset M_{cb}(L_p(\mathbb{T}^d_\theta))$.

Hard direction: $M_{cb}(L_p(\mathbb{T}^d)) \supset M_{cb}(L_p(\mathbb{T}^d_\theta))$. An infinite complex matrix $\alpha = (\alpha_{m,n})_{m,n\in\mathbb{Z}^d}$ indexed by \mathbb{Z}^d is called a Schur multiplier on $S_p(\ell_2(\mathbb{Z}^d))$ if the map $T_\alpha : (a_{m,n})_{m,n\in\mathbb{Z}^d} \mapsto (\alpha_{m,n}a_{m,n})_{m,n\in\mathbb{Z}^d}$ is bounded on $S_p(\ell_2(\mathbb{Z}^d))$. Hard direction: $M_{\operatorname{cb}}(L_p(\mathbb{T}^d)) \supset M_{\operatorname{cb}}(L_p(\mathbb{T}^d))$. An infinite complex matrix $\alpha = (\alpha_{m,n})_{m,n\in\mathbb{Z}^d}$ indexed by \mathbb{Z}^d is called a Schur multiplier on $S_p(\ell_2(\mathbb{Z}^d))$ if the map $T_\alpha: (a_{m,n})_{m,n\in\mathbb{Z}^d} \mapsto (\alpha_{m,n}a_{m,n})_{m,n\in\mathbb{Z}^d}$ is bounded on $S_p(\ell_2(\mathbb{Z}^d))$. Let $A = (a_{m,n})_{m,n\in\mathbb{Z}^d} \in S_p(\ell_2(\mathbb{Z}^d))$. Define $\pi_U(A) = \operatorname{diag}(U^m)_{m\in\mathbb{Z}^d} A \operatorname{diag}(U^{-m})_{m\in\mathbb{Z}^d}.$ Hard direction: $M_{\operatorname{cb}}(L_p(\mathbb{T}^d)) \supset M_{\operatorname{cb}}(L_p(\mathbb{T}^d_\theta))$. An infinite complex matrix $\alpha = (\alpha_{m,n})_{m,n\in\mathbb{Z}^d}$ indexed by \mathbb{Z}^d is called a Schur multiplier on $S_p(\ell_2(\mathbb{Z}^d))$ if the map $T_\alpha: (a_{m,n})_{m,n\in\mathbb{Z}^d} \mapsto (\alpha_{m,n}a_{m,n})_{m,n\in\mathbb{Z}^d}$ is bounded on $S_p(\ell_2(\mathbb{Z}^d))$. Let $A = (a_{m,n})_{m,n\in\mathbb{Z}^d} \in S_p(\ell_2(\mathbb{Z}^d))$. Define $\pi_U(A) = \operatorname{diag}(U^m)_{m\in\mathbb{Z}^d} A \operatorname{diag}(U^{-m})_{m\in\mathbb{Z}^d}.$

Then

$$\|\pi_U(A)\|_{L_p(B(\ell_2)\bar{\otimes}\mathbb{T}^d_\theta)}=\|A\|_{\mathbb{S}_p(\ell_2(\mathbb{Z}^d))}.$$

Hard direction: $M_{cb}(L_p(\mathbb{T}^d)) \supset M_{cb}(L_p(\mathbb{T}^d_\theta))$.

An infinite complex matrix $\alpha = (\alpha_{m,n})_{m,n \in \mathbb{Z}^d}$ indexed by \mathbb{Z}^d is called a Schur multiplier on $S_p(\ell_2(\mathbb{Z}^d))$ if the map

 $T_{\alpha}: (a_{m,n})_{m,n \in \mathbb{Z}^d} \mapsto (\alpha_{m,n} a_{m,n})_{m,n \in \mathbb{Z}^d}$ is bounded on $S_p(\ell_2(\mathbb{Z}^d))$.

Let $A = (a_{m,n})_{m,n \in \mathbb{Z}^d} \in \mathcal{S}_p(\ell_2(\mathbb{Z}^d))$. Define

$$\pi_U(A) = \operatorname{diag}(U^m)_{m \in \mathbb{Z}^d} A \operatorname{diag}(U^{-m})_{m \in \mathbb{Z}^d}.$$

Then

$$\|\pi_U(A)\|_{L_p(B(\ell_2)\bar{\otimes}\mathbb{T}^d_\theta)}=\|A\|_{\mathbb{S}_p(\ell_2(\mathbb{Z}^d))}.$$

Let $\phi \in M_{\mathrm{cb}}(L_p(\mathbb{T}^d_\theta))$ and $\alpha = (\phi(m-n))_{m,n\in\mathbb{Z}^d}$. It is easy to check that

$$T_{\phi}(\pi_U(A)) = \pi_U(T_{\alpha}(A)).$$

Whence α is a Schur multiplier on $S_p(\ell_2(\mathbb{Z}^d))$.

Hard direction: $M_{cb}(L_p(\mathbb{T}^d)) \supset M_{cb}(L_p(\mathbb{T}^d_\theta))$.

An infinite complex matrix $\alpha = (\alpha_{m,n})_{m,n\in\mathbb{Z}^d}$ indexed by \mathbb{Z}^d is called a Schur multiplier on $S_p(\ell_2(\mathbb{Z}^d))$ if the map

 $T_{\alpha}: (a_{m,n})_{m,n \in \mathbb{Z}^d} \mapsto (\alpha_{m,n}a_{m,n})_{m,n \in \mathbb{Z}^d}$ is bounded on $S_p(\ell_2(\mathbb{Z}^d))$.

Let $A = (a_{m,n})_{m,n \in \mathbb{Z}^d} \in \mathcal{S}_p(\ell_2(\mathbb{Z}^d))$. Define

$$\pi_U(A) = \operatorname{diag}(U^m)_{m \in \mathbb{Z}^d} A \operatorname{diag}(U^{-m})_{m \in \mathbb{Z}^d}.$$

Then

$$\|\pi_U(A)\|_{L_p(B(\ell_2)\bar{\otimes}\mathbb{T}^d_\theta)}=\|A\|_{\mathbb{S}_p(\ell_2(\mathbb{Z}^d))}.$$

Let $\phi \in M_{cb}(L_p(\mathbb{T}^d_\theta))$ and $\alpha = (\phi(m-n))_{m,n\in\mathbb{Z}^d}$. It is easy to check that

$$T_{\phi}(\pi_U(A)) = \pi_U(T_{\alpha}(A)).$$

Whence α is a Schur multiplier on $S_p(\ell_2(\mathbb{Z}^d))$. Considering matrices A with entries in S_p , we prove in the same way that α is cb.

Hard direction: $M_{cb}(L_{\rho}(\mathbb{T}^d)) \supset M_{cb}(L_{\rho}(\mathbb{T}^d_{\theta}))$.

An infinite complex matrix $\alpha = (\alpha_{m,n})_{m,n\in\mathbb{Z}^d}$ indexed by \mathbb{Z}^d is called a Schur multiplier on $S_p(\ell_2(\mathbb{Z}^d))$ if the map $T_\alpha: (a_{m,n})_{m,n\in\mathbb{Z}^d} \mapsto (\alpha_{m,n}a_{m,n})_{m,n\in\mathbb{Z}^d}$ is bounded on $S_p(\ell_2(\mathbb{Z}^d))$. Let $A = (a_{m,n})_{m,n\in\mathbb{Z}^d} \in S_p(\ell_2(\mathbb{Z}^d))$. Define

$$\pi_U(A) = \operatorname{diag}(U^m)_{m \in \mathbb{Z}^d} A \operatorname{diag}(U^{-m})_{m \in \mathbb{Z}^d}.$$

Then

$$\|\pi_U(A)\|_{L_p(B(\ell_2)\bar{\otimes}\mathbb{T}^d_\theta)}=\|A\|_{S_p(\ell_2(\mathbb{Z}^d))}.$$

Let $\phi \in M_{\mathrm{cb}}(L_p(\mathbb{T}_\theta^d))$ and $\alpha = (\phi(m-n))_{m,n \in \mathbb{Z}^d}$. It is easy to check that

$$T_{\phi}(\pi_U(A)) = \pi_U(T_{\alpha}(A)).$$

Whence α is a Schur multiplier on $S_p(\ell_2(\mathbb{Z}^d))$. Considering matrices A with entries in S_p , we prove in the same way that α is cb. Then it is well known that ϕ is a cb multiplier on $L_p(\mathbb{T}^d)$ for $p=\infty$. By a very recent transference theorem of Neuwirth-Ricard, this latter result remains true for $p<\infty$. Thus $\phi\in M_{\mathrm{cb}}(L_p(\mathbb{T}^d))$.

Summation methods

Let $x \in L_p(\mathbb{T}_\theta^d)$ with $1 \le p \le \infty$.

Square Fejer means:

$$F_n[x] = \sum_{m \in \mathbb{Z}^d, |m_j| \le n} \left(1 - \frac{|m_1|}{n+1}\right) \cdots \left(1 - \frac{|m_d|}{n+1}\right) \hat{x}(m) U^m$$

Circular Poisson means:

$$\mathbb{P}_r(x) = \sum_{m \in \mathbb{Z}^d} \hat{x}(m) r^{|m|_2} U^m$$

where
$$|m|_2 = (|m_1|^2 + \cdots + |m_d|^2)^{1/2}$$
.

Fundamental problem: In which sense do these means of *x* converge back to *x*?

Mean convergence

Proposition (mean convergence theorem).

Let
$$1 \le p < \infty$$
. If $x \in L_p(\mathbb{T}_\theta^d)$ then

$$\lim_{n\to\infty} F_n[x] = \lim_{r\to\infty} \mathbb{P}_r[x] = x \text{ in } L_p(\mathbb{T}^d_\theta).$$

Mean convergence

Proposition (mean convergence theorem). Let $1 \le p < \infty$. If $x \in L_p(\mathbb{T}_p^d)$ then

$$\lim_{n\to\infty} F_n[x] = \lim_{r\to\infty} \mathbb{P}_r[x] = x \text{ in } L_p(\mathbb{T}^d_\theta).$$

But the problem for the pointwise convergence is hard and delicate for several raisons:

- We are dealing with operators instead of functions.
- Usually in the commutative case, a pointwise convergence theorem is based on the corresponding mean theorem and maximal inequality.

Pointwise convergence

Definition (C. Lance)

A sequence (x_n) in $L_p(\mathbb{T}^d_\theta)$ is said to converge bilaterally almost uniformly (b.a.u.) to x if for any $\varepsilon > 0$ there is a projection $e \in \mathbb{T}^d_\theta$ s.t.

$$\tau(1-e) < \varepsilon$$
 and $\lim_{n \to \infty} \|e(x_n - x)e\|_{\infty} = 0.$

Remark. In the commutative case this is equivalent to the almost everywhere convergence (Egorov's theorem).

Question. Let $1 \le p \le \infty$ and $x \in L_p(\mathbb{T}_\theta^d)$. Do we have

$$F_n[x] \xrightarrow{b.a.u} x \text{ as } n \to \infty \text{ and } \mathbb{P}_r[x] \xrightarrow{b.a.u} x \text{ as } r \to \infty$$
?

Maximal inequalities

This is a subtle part of the talk. We don't have the noncommutative analogue of the usual pointwise maximal function. Even for any positive 2×2 -matrices a, b,

max(a,b) does not make any sense

Maximal inequalities

This is a subtle part of the talk. We don't have the noncommutative analogue of the usual pointwise maximal function. Even for any positive 2×2 -matrices a, b,

max(a, b) does not make any sense

Instead, we define the space $L_p(\mathbb{T}^d_\theta;\ell_\infty)$. For a sequence $x=(x_n)$ of positive operators in $L_p(\mathbb{T}^d_\theta)$ we define x to be in $L_p(\mathbb{T}^d_\theta;\ell_\infty)$ if there is a positive $a\in L_p(\mathbb{T}^d_\theta)$ s.t.

$$x_n \leq a$$
, $\forall n \in \mathbb{N}$.

Then $\|x\|_{L_p(\mathbb{T}^d_\theta;\ell_\infty)}$ is defined to be $\inf \|a\|_p$.

Remark. We skip the definition of $\|x\|_{L_p(\mathbb{T}^d_\theta;\ell_\infty)}$ for a general x. This norm is denoted by $\|\sup_n^+ x_n\|_p$. Note that this is only a notation since $\sup x_n$ does not make any sense in the noncommutative setting.

Theorem (maximal inequalities): $1 , <math>x \in L_p(\mathbb{T}_\theta^d)$. Then

$$\|\sup_{n\geq 1}^+ F_n[x]\|_{p} \leq C_p \|x\|_{p}$$
 and $\|\sup_{r>0}^+ \mathbb{P}_r[x]\|_{p} \leq C_p \|x\|_{p}$.

In particular, if x is positive, then there is $a \in L_p(\mathbb{T}^d_\theta)$ s.t.

$$\|a\|_p \leq C_p \|x\|_p$$

and

$$F_n[x] \le a, \quad \forall \ n \ge 1 \quad \text{and} \quad \mathbb{P}_r[x] \le a, \quad \forall \ 0 \le r < 1.$$

For p = 1 we have a weak type (1, 1) substitute.

Theorem (maximal inequalities): $1 , <math>x \in L_p(\mathbb{T}_\theta^d)$. Then

$$\|\sup_{n\geq 1}^+ F_n[x]\|_{p} \leq C_p \|x\|_{p}$$
 and $\|\sup_{r>0}^+ \mathbb{P}_r[x]\|_{p} \leq C_p \|x\|_{p}$.

In particular, if x is positive, then there is $a \in L_p(\mathbb{T}_{\theta}^d)$ s.t.

$$\|a\|_p \leq C_p \|x\|_p$$

and

$$F_n[x] \le a$$
, $\forall n \ge 1$ and $\mathbb{P}_r[x] \le a$, $\forall 0 \le r < 1$.

For p = 1 we have a weak type (1, 1) substitute.

Idea of proof. $(\mathbb{P}_r)_{0 \le r < 1}$ is a semigroup of trace preserving positive maps. Applying the noncommutative maximal ergodic inequality (Junge-Xu), we get the maximal inequality for \mathbb{P}_r . The proof for the Fejer means $F_n[x]$ uses transference and Tao Mei's noncommutative Hardy-Littlewood maximal inequality. The case p = 1 is much harder.

Theorem (maximal inequalities): $1 , <math>x \in L_p(\mathbb{T}_{\theta}^d)$. Then

$$\|\sup_{n\geq 1}^+ F_n[x]\|_{p} \leq C_p \|x\|_{p}$$
 and $\|\sup_{r>0}^+ \mathbb{P}_r[x]\|_{p} \leq C_p \|x\|_{p}$.

In particular, if x is positive, then there is $a \in L_p(\mathbb{T}_{\theta}^d)$ s.t.

$$\|a\|_p \leq C_p \|x\|_p$$

and

$$F_n[x] \le a$$
, $\forall n \ge 1$ and $\mathbb{P}_r[x] \le a$, $\forall 0 \le r < 1$.

For p = 1 we have a weak type (1, 1) substitute.

Idea of proof. $(\mathbb{P}_r)_{0 \le r < 1}$ is a semigroup of trace preserving positive maps. Applying the noncommutative maximal ergodic inequality (Junge-Xu), we get the maximal inequality for \mathbb{P}_r . The proof for the Fejer means $F_n[x]$ uses transference and Tao Mei's noncommutative Hardy-Littlewood maximal inequality. The case p=1 is much harder.

Corollary. Let $1 \le p \le \infty$ and $x \in L_p(\mathbb{T}_{\theta}^d)$. Then

$$F_n[x] \xrightarrow{b.a.u} x \text{ as } n \to \infty \quad \text{and} \quad \mathbb{P}_r[x] \xrightarrow{b.a.u} x \text{ as } r \to \infty.$$

Square function inequalities

For $x \in L_p(\mathbb{T}_{\theta}^d)$ we define Littlewood-Paley g-functions

$$G_c(x) = \left(\int_0^1 \left|\frac{d}{dr}\mathbb{P}_r[x]\right|^2 (1-r)dr\right)^{1/2} \text{ and } G_r(x) = G_c(x^*),$$

where \mathbb{P}_r denotes the circular Poisson means:

$$\mathbb{P}_r[x] = \sum_{m \in \mathbb{Z}^d} \hat{x}(m) r^{|m|_2} U^m$$

Square function inequalities

For $x \in L_p(\mathbb{T}^d_\theta)$ we define Littlewood-Paley g-functions

$$G_c(x) = \left(\int_0^1 \left|\frac{d}{dr}\mathbb{P}_r[x]\right|^2 (1-r)dr\right)^{1/2} \text{ and } G_r(x) = G_c(x^*),$$

where \mathbb{P}_r denotes the circular Poisson means:

$$\mathbb{P}_r[x] = \sum_{m \in \mathbb{Z}^d} \hat{x}(m) r^{|m|_2} U^m$$

Theorem. Let $2 \le p < \infty$. Then

$$||x||_{p} \approx \max(||G_{c}(x)||_{p}, ||G_{r}(x)||_{p}).$$

Idea of proof. Use square function inequalities for general quantum semigroups of Junge-Le Merdy-Xu.

Square function inequalities

For $x \in L_p(\mathbb{T}_q^d)$ we define Littlewood-Paley *g*-functions

$$G_c(x) = \left(\int_0^1 \left|\frac{d}{dr}\mathbb{P}_r[x]\right|^2 (1-r)dr\right)^{1/2} \text{ and } G_r(x) = G_c(x^*),$$

where \mathbb{P}_r denotes the circular Poisson means:

$$\mathbb{P}_r[x] = \sum_{m \in \mathbb{Z}^d} \hat{x}(m) r^{|m|_2} U^m$$

Theorem. Let $2 \le p < \infty$. Then

$$||x||_{p} \approx \max(||G_{c}(x)||_{p}, ||G_{r}(x)||_{p}).$$

Idea of proof. Use square function inequalities for general quantum semigroups of Junge-Le Merdy-Xu.

Remark. 1) A similar inequality for 1 by replacing maxby an inf.

2) For p = 1 we can introduce the corresponding Hardy space H₁ and describe its dual space as a BMO space.

